Multivariate temporal modeling of crime with dynamic linear models
نویسندگان
چکیده
منابع مشابه
Multivariate Stochastic Volatility with Bayesian Dynamic Linear Models
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount...
متن کاملBayes Linear Covariance Matrix Adjustment for Multivariate Dynamic Linear Models
A methodology is developed for the Bayes linear adjustment of the covariance matrices underlying a multivariate constant time series dynamic linear model. The covariance matrices are embedded in a distribution-free inner-product space of matrix objects which facilitates such adjustment. This approach helps to make the analysis simple, tractable and robust. To illustrate the methods, a simple mo...
متن کاملObservability and the eigenstructure of multivariate canonical dynamic linear models
Multivariate canonical state space dynamic models are developed by studying the eigenstructure of their transition matrices. Observability is introduced for time-varying model components defining locally observable dynamic models. Single component models that have a simple transition matrix are first discussed and categorized according to their forecast function. Then more complicated models, d...
متن کاملVariance estimation for multivariate normal dynamic linear models
In multivariate normal dynamic and state-space linear models the observational variance matrix is usually assumed known. Apart from a handful of special cases, estimation procedures that allow for the variance of the observational errors to be left unspecified are not widely available. The foundation of this paper is the general multivariate normal dynamic linear model with unknown but fixed ob...
متن کاملCovariance Estimation for Multivariate Conditionally Gaussian Dynamic Linear Models
In multivariate time series, the estimation of the covariance matrix of the observation innovations plays an important role in forecasting as it enables the computation of the standardized forecast error vectors as well as it enables the computation of confidence bounds of the forecasts. We develop an on-line, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2019
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0218375